cookieOptions = {...}; .無人零售的未來,究竟是機器視覺,還是RFID? - 3S Market「全球智慧科技應用」市場資訊網

3S MARKET

2020年8月10日 星期一


Walk-through RFID Checkout Solution 

and Smart Cameras



來源:科钛网 作者:CoreTech 


无人零售的未来究竟是机器视觉,还是RFID?
  
重返實體 無人商店興起
無人工廠、無人倉儲、無人機、無人駕駛……科技帶給人們的是勞動力的解放,給各行各業帶來的,則是格局的重構。而對普通消費者來講,零售模式的轉換是切身感受到的。

自2016年底亞馬遜的 Amazon Go 亮相以來,中國國內無人零售領域的投資迅速升溫,無人零售被資本市場,視為繼共享單車之後的又一投資風口。傳統實體零售、電子商務、再到現在「智慧零售」概念的提出,零售融合科技產生的化學反應,讓其超過了任何行業迭代的速度。

相較於傳統零售行業的房租、人工、物流壓力,無人零售旨在減輕這些痛點:透過減少前端人力削減人工成本,以較小的店鋪面積及靈活的選址,降低房租成本,同時借助物聯網和大數據降低物流成本。

電商們的流量大戰,從線上打到了線下,線上流量紅利時代逝去,已是行業共識,互聯網巨頭紛紛佈局線下零售,挖掘線下消費的大數據價值,試圖透過打造新場景,帶來新流量、新體驗和新供應鏈,無人零售數位化時代已然開啓。

科技推動發展。無可厚非,技術問題是無人零售普及的命門,視覺技術、物聯網技術與行動支付,則是其中的關鍵技術架構。當下, RFID 標籤技術及機器視覺行動偵測技術,是行業內比較推崇的兩種方式。

RFID:辨識技術鼻祖嗅到了智慧零售
簡單說,一個RFID晶片就像U盤一樣,可以存入特定數據,併發出無線射頻信號。接收機可以在一定距離內捕捉到信號。

无人零售的未来究竟是机器视觉,还是RFID?
  
在無人零售領域,RFID有著很大的發揮空間。無人便利店代表商家繽果盒子的CEO陳子林表示:「最初打造產品的時候,我們發現在無人商店裡使用RFID解決方案,是最可行、最有效率的。繽果盒子目前在全中國落地158家店,進駐22個城市。我們團隊利用RFID的商品辨識的優勢進行研發,RFID不僅僅是幫助認出這個商品而已,其實整套結算管理才是重頭戲。在研發最初,無人零售這行業是新物種,沒有可借鑒的,都要摸索。無人零售大戰一觸即發,我們越早推出越好。所以,選擇先用RFID技術把繽果盒子做出來,再去透過實戰,來去打磨後端支撐體系。」

匯美集團CMO肖海坤也表示,RFID在服裝的在智慧零售方面,還開發出更大的用處。

「我們可以透過攝影機捕捉到RFID晶片,能夠收集到顧客拿起過這件服裝的次數,每家門市店服裝銷售情況。這樣就知道了顧客的偏好,我們會根據這些數據改變服裝款式、顏色,最大程度滿足顧客需要。另外,如果門市店庫存減少,後台會自動顯示,我們可以第一時間智慧補貨,全程智慧化管理,工作人員很少參與。」

據不完全統計,目前市場上採用 RFID 標籤技術的各種無人店已超過 20 家。但在發展壯大的同時,RFID也出現了技術上的一些壁壘。比如:
1、成本。有質疑聲音認為,使用RFID技術雖然減少了線下人力成本,但後期運和維護成本很高,且標籤成本抑制了低價商品的毛利。

2、漏讀。漏讀是目前行業內,正在重點解決的問題之一,即使只有單件商品放置在結算區,設備也無法讀取商品資訊,晶片與天線之間沒有發生接觸。「RFID標籤的辨識距離,跟它的功率大小、靈敏度和天線大小有關,原因非常複雜。如果辨識距離太小,就容易發生誤讀,但辨識距離太短,又容易發生漏讀」。有專家解釋道。

3、速度。結算完畢後,顧客需要帶著已買單的商品,經過一個感應區,感應區會自動辨識是否有未支付的商品。如果沒有,系統就會提示顧客推門離開,整個過程耗時約5秒。而隨著顧客購買的商品數增加,即使系統能夠準確辨識,耗時也將進一步增加,嚴重影響用戶體驗。

4、止損。採用RFID方案的無人便利店,面臨的止損挑戰主要來源於兩方面:一是顧客惡意損毀RFID標籤二是顧客刻意遮蔽標籤的信號,比如用手或錫箔紙遮擋標籤。

目前,一些企業意識到了缺乏 " 護城河 " 的風險,對外宣稱正在跟進機器視覺技術。那麼,機器視覺技術又是什麼?

新技術「攪局」 機器視覺要幹掉RFID
機器視覺是指利用攝影機、手機 GPS 或手機 WiFi 等,辨識動作、商品和人,以及進行定位與關聯。行移動偵測則是透過攝影機,採集圖像進行算法計算,當鏡頭畫面發生變動,如有人走過、鏡頭被移動時,算法計算會啓動,而計算結果一旦超過閾值,便會觸發指示系統做出報警處理,移動偵測常用於無人值守監控錄影和自動報警。亞馬遜無人超市——Amazon Go所採用的便是機器視覺辨識技術。

无人零售的未来究竟是机器视觉,还是RFID?
  
使用機器視覺辨識技術的零售方式,流程簡單、無需結賬、即買即走。消費者進入Amazon Go購物前,需要一個亞馬遜帳號,並下載app。在入口處會對顧客進行人臉辨識,確認用戶身份。

當消費者在貨架前停留,並選擇商品時,攝影機會透過圖像、手勢辨識,判斷顧客是否將貨物置於購物籃(購買),還是只是看看然後放回原處(未購買)。

透過貨架上的紅外線感測器、壓力感應裝置(確認哪些商品被取走),及荷載感測器(用於記錄哪些商品被放回原處),掃描並記錄下消費者購買的商品,即時傳輸至 Amazon Go 的資訊中樞,然後自動在顧客亞馬遜賬戶上結算,用戶購物完成,直接離店。

无人零售的未来究竟是机器视觉,还是RFID?
无人零售的未来究竟是机器视觉,还是RFID?
  
智慧無人便利店「簡24」創始人兼 CEO 林捷談到未來,堅定的看好視覺辨識。「為什麼還有爭議,主要是智慧視覺辨識太難做,RFID技術成熟,很容易做好。」

林捷推出的無人便利店「簡24」,首家門市店以於 2018 年 10月 25 日在中國上海落地。據他介紹,簡 24 採取 Amazon Go 的方式,全智慧視覺辨識技術:用戶購物流程,就很像此前Amazon Go在宣傳片裡顯示的那樣:用戶掃碼打開閘機門,然後進店選購商品,選完商品後直接拿貨走人。

然而,由於智慧零售的技術複雜,在現實中尚沒有大規模出現。因此,基於物聯網、互聯網和智慧化,三種結合應用的則是大多數。

例如:京東 X 無人超市的貨架上,每一件商品都被貼上 RFID 標籤。同時,超市融合 RFID、人臉慧、智慧視覺辨識等多種技術,用戶在店內的所有行為、甚至在哪個貨架邊停留了幾秒,都可以被感知和分析。選好商品,消費者只需要通過結算通道,走出超市即可,全程不用進行任何操作。

據一位瞭解京東 X 超市項目的第三方人透露,京東研發出智慧視覺辨識系統,但根據不同場景選擇不同策略,便利店使用視覺辨識系統,但是在超市上還是採取 RFID 和人臉辨識等「相對折中」的技術。「京東就是給商家自由選擇權,當然,搭配不同的解決方案,成本結構也不同。」業內人士感嘆道。

無人零售未來發展趨勢
深蘭科技創始人陳海波曾表示,無人零售場景中「商品一定要能夠被遠距離非接觸辨識,機器視覺才是正確方向」。

但在萬端看來,雖然 RFID 單一技術並不能解決無人零售場景中的所有問題,但它仍有存在必要,而且擁有許多機器視覺,並不具備的優勢,比如即時監測庫存和商品的熱力分布。

萬端指出,未來商業的一大趨勢,就是數據的即時化和智慧化。RFID 即時、精準獲取海量數據的能力,如果能夠結合高效的數據分析系統,就可以為 C、B 端的協同,和供應鏈優化提供有力的數據支撐。

无人零售的未来究竟是机器视觉,还是RFID?
无人零售的未来究竟是机器视觉,还是RFID?
  
多技術融合
目前看來,多技術融合是未來無人零售解決方案的發展趨勢。

海外無人零售項目 QueueHop,無疑是 RFID 在無人零售場景中,結合其他技術的一個絕佳範例。QueueHop 的購物方式主要透過一個具有 RFID 功能的讀取器,和帶有商品二維碼的安全扣,以及具備自主結賬功能的系統來實現。

具體來說,它的運作方式是這樣的:首先,顧客把想要買的商品,放到專用的讀取器上,讀取器會辨識這些物品,並將價格和稅款顯示出來然後,系統會詢問顧客是否想要紙質的小票,或者直接 email 給 TA在顧客付款之後,還要把安全扣放入一個小槽裡面來解鎖。如果這是一個已經買過的商品,安全扣則自動被解鎖。

QueueHop 目前已經贏得了多家零售商客戶,包括 Rebecca Minkoff、Jor' jet Boutique ,以及其他一些著名的快時尚大眾品牌。

貼合應用場景
技術的發展,必須牢牢貼合實際應用場景。無人便利店是一種全新的零售業態,此前 RFID 廠商並未有針對性地,為這一場景設計產品。未來累積了一定經驗之後,應用 RFID 方案的無人便利店,有望得到進一步優化。

另外,在某些特殊場景中,RFID 技術也能揚長避短,充分發揮其價值。比如應用於很多食堂的 RFID 自助結算餐台。RFID 自助結算餐台,配備了多種色彩的餐具,每一種色彩對應一個價格,碗碟內置 RFID 標籤供餐台讀取價格資訊進行結算,一小時可以完成上千人次的自助結算,僅需一名操作員,站在設備後維持結算秩序即可,大大提高了結算效率。

路在何方
無人零售對整個行業來說,都是一個全新的命題,不管傳統企業,還是初創公司,都還處於探索階,還在不斷嘗試和驗證各種技術的可行性。

繽果盒子和 QueueHop 雖然以 RFID 起家,但也在積極探索機器視覺方案。目前零售行業正處在一個百花齊放、百家爭鳴的時代。而這些不同觀點的交叉和碰撞,正是行業創新和發展的源泉。1256180917

按此回今日3S Market新聞首頁

0 意見: