今日主題 智慧監控、智慧傳輸\儲存\顯示、雲端\物聯網\大數據、應用行業解決方案
|
3S
Market 最讚報
| |||||
智慧監控
| ||||||
智慧傳輸\儲存\顯示
| ||||||
雲端\物聯網\大數據
| ||||||
應用行業解決方案
| ||||||
3S Market 是台灣物聯網資訊、安全監控,與雲端智慧整合應用解決方案的人氣布落格網站,在公共、工商與居家三大應用領域中,提供產品、產業、市場以及行業垂直應用領域的資訊平台。 Smart、Solutions、Strategy 是3S Market 提供給智慧應用產業的核心價值。
2016年4月25日 星期一
‧ 2016\04\25\ 3S Market Daily 智慧產業新聞資訊平台
‧ secutech ,你累了嗎?
3S Market 施正偉
難以想像…一個已經辦了19屆的展覽,今年卻好像是…才在辦第一屆 !?
secutech這個展覽在19 年前,在幾個安全器材代表性廠商包括昇銳、利凌⋯⋯等的「催生」下,歷經 TICC、世貿二館、一館兩區、一館全區、南港展覽館全館,到今年這般的規模。
與其說 secutech 還能不能重返榮耀?應該還得看…法蘭克福新時代傳媒以媒體的立場定位,未來如何去經營服務「安控產業」這塊市場?
messe frankfurt 從 2011 年
secutech 達到歷史最高峰之後,就開始行走險降坡,這不只是展覽本身如此,還包括其系列的平面雜誌、活動,還有一直沒有起色的網路媒體,全面出現衰退。這個體系在2007 -2011年之間一路平坦,在這期間有新產品、新服務,卻沒有新作法。所以當康莊大道飆過癮了,突然路面小了、彎曲了,甚至眼前盡是險降坡的時候,誰能讓它再平穩?
這次展覽,傳言紛紛,包括 secutech 未來將兩年舉辦一次;更有毒舌派在展覽前到處傳播,今年就是「紀念」代表作,想作個完整回憶錄的廠商,請勿向隅!這些傳言,至今仍應屬空穴來風!很明顯的,這幾年除了有發號施令者,沒有真正去統合內容方向,同時又能對旗下各項業務都能操盤掌控的人。在自然成長後,老態加病變的衰退,其來有自!
19 年前 secutech 這個展覽,被業界大部分的廠商「論斷」:
絕對不會辦超過三年,旗下的 a&s International 絕對不會出版超過兩年,這些被形容的話語一ㄧ被傳遍整個產業。事實上這段期間,其在中國的事業也一度陷入極大的危機,差點被當時兩個中國當地媒體夾殺出局。這些風雨飄搖的歷程,目前在這個公司裡頭,最多也沒有超過兩個人,曾真正跟隨著親歷這些「市場洗禮」。而這家被 messe frankfurt 併購的前身—— 紐奧良文化,在那時已成立有 10 年的時間,一群老幹部離職,客戶服務不到位,被廠商杯葛、排斥,內部山頭林立,不合作又各自以為是⋯⋯
現今的狀況是否更糟於過去?當然,市場的變化,每一個世代有每一個世代的困難與挑戰,但是從這次展覽的各方呈現,其內部對外不一致的回應,甚或根本無法招架來自客戶端的質疑,這些現象反映出,這個公司目前,似乎沒有一個,能或敢與產業溝通對話的人?messe Frankfurt 台灣似乎急需一個摩西⋯⋯
這個公司面臨的挑戰,除了自身內部的問題,還有來自市場的變化,包括技術的變化、產品的變化、產業的變化,是否真正有人能深入掌握,並清楚能指出未來發展的方向,這個過去其非常自豪「引領產業趨勢潮流」的自我封號。
如果答案是肯定的,為什麼已經不知有多久的時間,其展覽也好,活動也好,雜誌也好,都沒有帶出一丁點產業鏈發展的輪廓?
曾經有3S Market 匿名讀者反應,很喜歡看我做這些批評。我必須很清楚地說,這些所謂的「批評」,是站在產業發展的出發點上,就事論事,而且我敢公開論述,而不是躲在背後指指點點,或是玩兩面手法的栽贓抹黑,這不是我——
施公的風格!也不應該是產業媒體人的作為。
媒體同樣是產業族群中的一份子,產業興衰榮枯都有其一定程度的命運共同體。就算
secutech 明年真的沒了,三年內也不可能有第二個展覽,足以能抗衡現今 secutech 的規模。產業媒體的經營,如果沒有大格局的氣度,前瞻的思維,突破性的做法,只存在著用「取代」、「殲滅」的陳舊觀念與行事,最後就是自己玩死自己!
在今年 secutech 閉幕離開的最後一刻,一位朋友問我,「對於今年大會設了這麼多智慧家庭、智慧工廠、智慧交通⋯⋯,看法如何?」
我回應說很好啊。這些每一個主題,大部分在3S Market 內容裡,過去三年多以來,幾乎都有定時定期的相關內容報導分享,這位朋友同意的點點頭。但我心裡想,看到趨勢並沒有什麼了不起,能否把趨勢,轉化成每個不同發展階段的具體商機,那才是真正的功夫。而這才是最難的!
同樣的,一個媒體只自詡自己的代表性,與不斷地強調自己的大,卻沒有把服務的內涵,投入經營在產業發展中的困難、問題與需求上,其再大也不會有整個產業的大。這或許才是產業的媒體業者,應該去深刻體認的!
secutech 加油!
‧ 淺析高乘載車道系統的智慧技術應用
來源:CPS中安網
一般而言,為了保證HOV車道(高乘載車道,HOV lane, high-occupancy vehicle lane)的合理合法使用、節省人工、提高效率,成熟的HOV系統會採取對HOV車道進行監控,自動辨識HOV車道上車輛乘客個數的技術對車輛監督。
即 HOV系統通過電子員警對車輛正面進行拍攝,並進行演算法處理,首先定位車輛、進而定位車窗、在車窗區域內監測乘客臉部,從而實現乘客計數,乘客計數與車牌辨識演算法相結合,就可以實現HOV車道的自動監控。其中涉及到的技術有車輛檢測、車窗檢測和車輛牌照辨識。
車輛檢測
車輛檢測技術是交通監控系統的關鍵,可以通過幀差法、背景差法、路面標記法和邊緣檢測法來實現。
幀差法通過把兩幅相鄰幀相減,以濾除圖像中的靜止景物,而僅保留運動物體。該方法的優點是對環境的光新變化不敏感,缺點是無法檢測靜止車輛,而且由於系統的圖像採樣頻率固定,其檢測效果受車輛速度的影響,太慢或太快的車輛都可能導致檢測錯誤。
背景差法計算當前輸人幀和背景圖像只差,以檢測前景物體。背景差法可以檢測靜止車輛,但缺點是背景更新中的誤差累積,以及對環境光線的變化和陰影。
路面標記法是依據路面標記,是否被覆蓋來檢測有無車輛,可以避免光線和陰影的影響,但是缺點是需要在路面上畫上標記,而道路上的標記並不允許隨意添加,所以在系統的安裝上有很大的局限性。
邊緣檢測法對環境光線變化的穩健性,略高於背景差法,車體的不同部分,顏色等提供了較多的邊緣資訊,即使是與路面色彩相近的車輛,也由於比地面反射更多的的光線而能用邊緣檢測的方法進行檢測。
車窗檢測法
車窗定位是把車窗當作一個獨立於車身,其它部分的目標,從汽車圖像中分離出來。目前對車窗的定位,主要應用於基於影像圖像的即時車型辨識系統中車窗定位的結果是確定車窗的大小,及在整車中的相對位置,並作為特徵參數傳遞給後繼的車型辨識系統及人臉檢測系統。
車輛牌照辨識技術
目前實現車輛自動辨識系統主要有兩種方法:一種是採用無線電技術,主要通過車輛上安裝具有一定頻率的電磁波發射裝置,並在所需要的檢測地點安裝檢測裝置,實現對車輛的自動辨識。另一種方法是通過攝影機採集圖像,並應用影像處理、圖像分析和模式辨識技術自動辨識車輛牌照號碼。
基於無線電技術的車牌自動辨識系統
在此類車牌自動辨識系統中,應用最廣泛的是射頻技術。射頻辨識技術是通過射頻信號自動辨識目標物件,獲取相關的資料。射頻辨識系統通常由射頻辨識標籤、射頻讀寫器、電腦三部分組成。射頻辨識標籤儲存著車輛的相關資訊,通常被貼放在需要辨識的車輛上,它所儲存的資訊通常可用射頻讀寫器進行非接觸讀寫。當裝有射頻辨識標籤的車輛進入到射頻讀寫器的工作範圍時,射頻辨識標籤被啟動,並將自身的資訊經天線發射出去,經辨識系統的射頻讀寫器接受後,送交電腦進行處理。
基於數位影像處理和模式辨識的車牌自動系統
通過影像採集系統採集車輛圖像,經過數位影像處理和字元辨識,認讀出圖像中的汽車牌照號碼。這種方法不需要在車輛上安裝額外的辨識標識或設備,而是直接利用已有的拍照資源,對汽車牌照進行非接觸性資訊採集,並即時智慧辨識,因而對車輛沒有任何影響。其次,還可以充分利用現有公路往上的影像設備,節省了設備與安裝,並且維護方便。
隨著影像影像處理技術的發展,基於數位影像處理的車牌自動辨識技術,顯示出更大的優勢,在智慧交通領域發揮著越來越重要的作用。
雖然現在HOV車道系統的發展比較緩慢,但是其走向技術化,將越來越多的技術應用其中節省人力將是必然趨勢。我們不能因為發展速度而忽視其中可以應用的技術,也不能因為這些技術局限HOV車道未來的發展,應該不斷的創新、突破,成為智慧交通領域一個重要的分支。
近年來,隨著深度學習技術的興起,其中的人臉辨識應用和車輛特徵辨識應用,也在慢慢融入進智慧交通領,我們完全可以期待深度學習與HOV車道系統的融合,讓智慧交通更加智慧,讓HOV車道真正的優化道路資源。
‧ 機器視覺離消費市場有多遠?
作為人工智慧的兩個分支,電腦視覺與機器視覺在近年都取得了長足的進步。前者自2010年以來,隨著深度學習再度流行並用於目標辨識,在人臉辨識等方面已經超過了人類;而後者在工業應用方面,也有不少突破性的應用。
但是,在消費級市場方面,電腦視覺與機器視覺的進展並不大。不少人對於電腦視覺與機器視覺在消費級市場能有多大實質性地應用,存在深深地擔憂。
電腦視覺與機器視覺
首先,我們有必要理清楚機器視覺與電腦視覺之間的關係。從學科分類上,
二者都被認為是 Artificial Intelligence 下屬科目,不過電腦視覺偏軟體,通過演算法對圖像進行辨識分析,而機器視覺軟硬體都包括(採集設備,光源,鏡頭,控制,機構,演算法等),指的是系統,更偏實際應用。簡單的說,我們可以認為電腦視覺是研究“讓機器怎麼看”的科學,而機器視覺是研究“看了之後怎麼用”的科學。
電腦視覺與機器視覺的問題是,前者太學術,後者太工業,因而一直以來在消費級市場缺乏好的產品。圖漾創始人費浙平向記者說,機器視覺的很多核心技術和原理多年前就比較成熟了,近年來的進展主要集中在工程化,比如GPU和視覺計算加速器的出現解決了計算量問題。但與此同時,要想把視覺技術實現真正產品落地,中間還有不少其他問題,他們也在摸索中。
視覺技術在消費級市場最早的嘗試是微軟的Kinect。2010年,微軟聯合深度攝影機技術方案提供方PrimeSense正式對外推出Kinect,利用骨骼捕捉技術,Kinect可以捕捉遊戲玩家的骨骼動作,從而讓遊戲玩家可以不接觸螢幕即可玩遊戲。在Kinect之後,華碩、Intel、谷歌以及蘋果,也相繼在深度攝影機的應用場景上跟進,一切都看起來往好的方向發展。
但深度攝影機作為獨立產品,市場化難度頗大。例如Intel在13年在開發者會議上宣佈,將推出自己的微型深度感知模組,華碩、戴爾、惠普、聯想等多家 PC廠家,都將從2014年下半年開始,在產品線中部署這款深度感知模組。而兩年多過去了,曾經預言的整合深度攝影機的產品遲遲未見。
那麼,處於電腦視覺和機器視覺交叉部分的深度攝影機,應該如何打開消費級市場?
深度攝影的瓶頸
深度攝影機也稱RGBD攝影機。我們常用的攝影機是RGB攝影機,單一個攝影機便能感知彩色可見光資訊(Red、Green、Blue),而RGBD攝影機是在我們常見的RGB攝影機基礎上,增加了深度資訊。
深度攝影機獲取圖像方式,分為主動式獲取和被動式獲取。二者的主要區別集中在觀測感測器是否主動向環境發出探測光。如大疆精靈4上的雙目視覺便是被動式獲取深度圖像,其技術特點是攝影機不主動向環境中發射能量,而通過兩個以上攝影機計算特徵點的座標差,得出感知環境中現有能力得到資訊,這一方式與人類雙眼獲得時差的方式最為相近,但最大的弊端在於限於目前的技術,目前的辨識精度還不高,過於依賴光線,而且無法處理特徵不明顯的場景,所以強光暗光都會導致深度計算的失效。
主動式獲取所採用的方式,則是從蝙蝠等生物上尋找靈感,通過主動發射探測光通過計算獲取深度圖像。這當中又分為三類:“RF-modulated light sources with phase detector”、“Range gated imagers”、“Direct Time-of-Flight
imagers”,如Kinect一代所採用的PrimeSense就屬於第二類,隨著蘋果收購PrimeSense,微軟也在Kinect二代中改為微軟自有技術,一般認為二代採用的是直接TOF的技術。
以Kinect的深度攝影機為例,它包含了一個紅外線投射器、一個RGB攝影機和一個紅外感應器,由於深度攝影機自帶光源,而且是不可見的紅外光,對我們的生活無任何影響。似乎深度攝影機獲取景深資訊就已經完美了,但也有他的弊端。由於是主動方式,兩個同波段紅外光會出現干涉,導致兩台一樣的深度攝影機沒有辦法一起使用,而且受發射功率的影響,檢測距離也會受到很大影響。
市面上常見的深度攝影機,Kinect距離最遠,但也需要最高達到12W的用電供給,拖一根供電線很是累贅。同時,深度攝影機還難以應用於戶外,因為陽光中也有紅外成分,會對主動紅外光部分造成干擾。紅外光對於玻璃情景,也無計可施,出現無法探測距離的情況。
Kinect獲取的深度圖像
艱難中的嘗試
Kinect一代售罄一空之後,對Kinect二代的綁定更加嚴厲,這更加抑制了銷售量;Leap Motion兩年前由於銷售情況不如預期,不得不解雇了 10% 的員工,切入虛擬實境。
蘋果收購了Primesense之後也不知道在盤算什麼小九九,有分析稱蘋果打算放在iPhone上,這樣我們拍照時就能拍出3D效果的了;另一邊Intel則將目標對準了機器人無人機,比如小米的機器人Segway Robot,以及昊翔的無人機Typhooon H。
機器人和無人機正是這兩年的大熱產品,看起來Intel可能會成為贏家,但因為Segway Robot和Typhooon H都還未正式上市,因此效果如何還有待驗證。也就是說,在消費級市場還沒有一個特別成功的案例。
Intel CEO 科再奇展示應用了RealSense模組的的Typhooon H
而在對岸中國,Intel的RealSense出來之後,給了中國一些創業者的信心,因此催生了一批相關的創業企業,但目前成規模的應用也寥寥無幾。
奧比中光是其中最早實現量產的,其深度攝影機與Kinect一樣,主要應用在一些電視遊戲上;與奧比中光有直接競爭的是華捷艾米,只不過在產品量產上,華捷艾米的進度慢了一步;圖漾的產品則正在準備量產階段中,瞄準的方向都是些行業應用,似乎對消費應用還在觀望階段;格靈深瞳正在做應用在自動駕駛汽車上的深度攝影機;速感看好機器人;
機器人是目前熱門的應用領域,目前機器人的路徑規劃大多使用雷達,雷達雖然只能建立平面的深度圖像,但市場上已經有公開產品,而且雷達的導航所用到的SLAM方案已經比較成熟,而視覺導航的SLAM方案則還很少見,iRobot是較早開始在其掃地機器人上使用SLAM方案,不過也不到1年時間,因此想要在機器人上使用視覺避障與導航,看起來還需要一段時間。
要解決的問題有哪些
那麼,深度攝影機消費級應用的春天何時才會到來?通過與相關從業人員的交流,我們感覺到深度攝影機只是一個產業鏈中的一環,當他們在做深度攝影機的時候,相關的產業鏈上的工作還有很多,比如晶片,比如後續的圖像辨識、影像分析等等。以下是他們的回答:
格靈深瞳技術人員:
“CV在消費領域落實的其中一個障礙,還是支持高性能運算的低功耗低價位晶片選擇太少,有限的幾個也很難用。所以目前只能在工業領域,機器視覺本身是工業術語。在大消費領域我們傾向於叫 embedded vision(嵌入式視覺)。這一類產品都是光、機、電、軟體、演算法一體,跨多個專業領域,對系統整合的難度要求更高。”
uArm機械臂創始人鄧世韜:
“主要是晶片的處理能力、紅外投影模組的解析度提升。我自己更關注批量生產的穩定性,因為這些零配件裝在一起,需要校正、標定等,這是一個挺大的挑戰,特別是對創業公司。”
速感科技創始人陳震:
“單從機器人領域來看,機器視覺有很大一塊兒需要解決的問題是,目前在產業上游的核心感測器和下游的機器人落地應用中間存在一定的斷檔。也就是我們看到的有廠商專門做攝影機,雷達這樣的元器件,專門有廠商做機器人整機,但是幾乎沒有一個成熟的視覺技術方案,可以把不同的感測器串聯起來,做成一個可以商用的統一的方案。
機器人是個複雜的系統,機器視覺也是機器人上一個複雜的部件,通過現有的技術,已經證明單純的依靠單一的感測器,是無法在現有機器人上,較好的實現各種功能的。
也就是說,在機器人上,需要有雷達、超聲波、攝影機、3D感測器配合在一起,才可能實現各種複雜的功能和任務。
而目前的機器人產業的現狀是,大家各自低頭研發自己的核心元件,使得下游的機器人廠商變成了機械式的集成商,從訊飛拿語音,從視頻門戶拿內容,從深圳拿行動底盤公模等等,視覺上面,也呈現出零星的發展態勢。
我們認為,機器人在接下來的發展中,必然會出現一兩套整體的標準集成方案,類似PC時代的windows作業系統和手機時代的IOS作業系統一樣。”
圖漾創始人費浙平:
“視覺計算處理器:由於視覺計算資料量和演算法複雜度很高,通用的CPU、GPU和DSP處理器晶片都不夠強大,而專用ASIC又不夠靈活,最好需要有一個像GPU為Graphics進行加速一樣,出現一種能為Vision提供強大計算能力的VPU晶片。
3D攝影機作為一種計算視覺用的光學產品,從演示到工程樣機、再從工程樣機到量產需要跨過的工程技術鴻溝比一般的拍攝類光學產品要大很多。比如光學器件的一致性篩選和光學參數的標定校正,就是一個單獨的研究方向。
產品的多樣性:作為一種光學產品,天然存在產品規格多樣性的問題,比如就最基礎的檢測距離指標來說,就很難做到遠近兼顧,必須在最大距離和最近盲區之間作出組合折衷。不同的應用場景需要不同規格的產品,進行適配和優化,因此對產品和技術方案的可伸縮性要求就很高,需要有多種不同規格的產品去滿足不同的應用需求。
人工智慧:基於3D視覺資料,一般都是為了實現更高級的辨識和分析能力,也就是對3D視覺資料使用的能力要求也很高,需要更聰明的大腦來使用更全面的視覺資料。”
AICRobo智慧型機器人系統架構師佘元博:
“機器視覺在消費市場實現,技術上是人工智慧技術和機器人硬體有效融合的問題,有兩條路:
1. 自上而下。以人工智慧技術應用為主,要求機器人硬體盡可能符合人工智慧技術工程化的條件。這意味著,產品得增加感測器,以保障智慧演算法資料供給,得提高成本,有良好的計算資源讓複雜的智慧演算法“跑”起來。還意味著產品具有不穩定性,人工智慧技術以概率為主,產品功能依賴人工智慧技術的比例越大,產品功能越不穩定。機器視覺應用裡面,人臉檢測是很穩定的,但遇到黑人也難打包票。
2. 自下而上。以機器人硬體為主,在功能上應用人工智慧技術輔助。這意味著,產品比較可靠,但同時也失去了一些智慧化的特性。當產品需要某些智慧化的功能時,要花費大量人力針對某個“智慧演算法”做移植,將本來在不穩定環境中運行的演算法應用在可控、高效而且低成本的嵌入式環境中,這點讓很多專注理論演算法的工程師頭疼。
機器視覺技術落實在產品上,有時候是自下而上做產品的過程中,給了“智慧演算法”太多的束縛,大家總是優先考慮成本和穩定性,而不是技術應用本身。我們從人工智慧領域出來做機器人,希望兩者做個折衷,以自上而下的願景給智慧技術找一個市場立足點。市場對智慧產品需求的不明晰,也是機器視覺難落地市場的一大因素。”
可以看出,晶片的運算能力以及成本是大家認為機器視覺在消費級市場落地的主要影響因素,其次是集成方案以及人工智慧技術。但由於消費電子對於量和價格以及技術成熟度均有著較高要求,可能要到這些配合的產業鏈環節都成熟之後,消費應用的春天才會到來,記本資訊網者也會進一步關注這方面的進展。